Users Online: 888
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Special issues Login 
ORIGINAL ARTICLE
Year : 2021  |  Volume : 10  |  Issue : 1  |  Page : 49

Evaluation avocado soybean unsaponifiables loaded in poly (lactic-co-glycolic) acid/avocado soybean unsaponifiables-fibrin nanoparticles scaffold (new delivery system) is an effective factor for tissue engineering


1 Skin Research Center, Shahid Beheshti University of Medical Science, Tehran; Department of Anatomical Science, Isfahan Medical University of Medical Science, Isfahan, Iran
2 Department of Advanced Medical Technology, Biomaterials Nanaotechnology and Tissue Engineering Group, Isfahan University of Medical Sciences, Isfahan, Iran
3 Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Correspondence Address:
Prof. Batool Hashemibeni
Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/abr.abr_189_20

Rights and Permissions

Background: Growth factors and chemical stimulants have key role in cartilage tissue engineering, but these agents have unfavorable effects on cells. Avocado soybean unsaponifiables (ASU) has chondroprotective and anti-inflammatory effects. In this study, fibrin2nanoparticles (FNP)/ASU, as a new delivery system, with stem cells applied for cartilage tissue engineering in poly (lactic-co-glycolic) acid (PLGA) scaffold. Materials and Methods: FNP/ASU prepared by freeze milling and freeze drying. NFP/ASU was characterized by dynamic light scattering (DLS). PLGA-NFP/ASU scaffold was fabricated and assessed by scanning electron microscope (SEM). Human adipose-derived stem cells (hADSCs) were seeded on scaffold and induced for chondrogenesis. After 14 days, cell viability and gene/protein expression evaluated. Results: The results of DLS and SEM indicated that nanoparticles had high quality. The expression of type II collagen and SOX9 and aggrecan (ACAN) genes in differentiated cells in the presence of ASU was significantly increased compared with the control group (P and lt; 0.01), on the other hand, type I collagen expression was significantly decreased and western blot confirmed it. Conclusions: This study indicated FNP/ASU loaded in PLGA scaffold has excellent effect on chondrogenic differentiation of hADSCs and tissue engineering.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1928    
    Printed46    
    Emailed0    
    PDF Downloaded391    
    Comments [Add]    

Recommend this journal