Users Online: 1848
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Login 
Year : 2021  |  Volume : 10  |  Issue : 1  |  Page : 8

Prediction of single-nucleotide polymorphisms within microRNAs binding sites of neuronal genes related to multiple sclerosis: A preliminary study

1 Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
2 Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

Correspondence Address:
Dr. Zeinab Shirvani Farsani
Department of Cellular and Molecular Biology, Faculty of life Sciences and Biotechnology, Shahid Beheshti University, Tehran
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/abr.abr_143_20

Rights and Permissions

Background: Different genetic variants, including the single-nucleotide polymorphisms (SNPs) present in microRNA recognition elements (MREs) within 3'UTR of genes, can affect miRNA-mediated gene regulation and susceptibility to a variety of human diseases such as multiple sclerosis (MS), a disease of the central nervous system. Since the expression of many genes associated with MS is controlled by microRNAs (miRNAs), the aim of this study was to analyze SNPs within miRNA binding sites of some neuronal genes associated with MS. Materials and Methods: Fifty-seven neuronal genes related to MS were achieved using dbGaP, DAVID, DisGeNET, and Oviddatabases. 3'UTR of candidate genes were assessed for SNPs, and miRNAs' target prediction databases were used for predicting miRNA binding sites. Results: Three hundred and eight SNPs (minor allele frequency >0.05) were identified in miRNA binding sites of 3'UTR of 44 genes. Among them, 42 SNPs in 22 genes had miRNA binding sites and miRNA prediction tools suggested 71 putative miRNAs binding sites on these genes. Moreover, in silico analysis predicted 22 MRE-modulating SNPs and 22 MRE-creating SNPs in the 3'UTR of these candidate genes. Conclusions: These candidate MRE-SNPs can alter miRNAs binding sites and mRNA gene regulation. Therefore, these genetic variants and miRNAs might be involved in MS susceptibility and pathogenesis and hence would be valuable for further functional verification investigation.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded256    
    Comments [Add]    
    Cited by others 1    

Recommend this journal