Users Online: 821
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Login 
REVIEW ARTICLE
Year : 2022  |  Volume : 11  |  Issue : 1  |  Page : 16

Conceptual framework for SARS-CoV-2–related lymphopenia


1 Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Immunology, Erythron Genetics and Pathobiology Laboratory, Isfahan, Iran
3 Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
4 Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran

Correspondence Address:
Dr. Hossein Khanahmad
Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/abr.abr_303_20

Rights and Permissions

The emerging of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak is associated with high morbidity and mortality rates globally. One of the most prominent characteristics of coronavirus disease-19 (COVID-19) is lymphopenia, which is in contrast to other viral infections. This controversy might be explained by the evaluation of impaired innate and adaptive immune responses, during the SARS-CoV-2 infection. During the innate immune response, poly-ADP-ribose polymerase hyperactivated due to virus entry and extensive DNA damage sequentially, leading to nicotinamide adenine dinucleotide (NAD)+ depletion, adenosine triphosphate depletion, and finally cell death. In contrast to the immune response against viral infections, cytotoxic T lymphocytes decline sharply in SARS-CoV-2 infection which might be due to infiltration and trapping in the lower respiratory tract. In addition, there are more factors proposed to involve in lymphopenia in COVID-19 infection such as the role of CD38, which functions as NADase and intensifies NAD depletion, which in turn affects NAD+–dependent Sirtuin proteins, as the regulators of cell death and viability. Lung tissue sequestration following cytokine storm supposed to be another reason for lymphopenia in COVID-19 patients. Protein 7a, as one of the virus-encoded proteins, induces apoptosis in various organ-derived cell lines. These mechanisms proposed to induce lymphopenia, although there are still more studies needed to clarify the underlying mechanisms for lymphopenia in COVID-19 patients.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed229    
    Printed4    
    Emailed0    
    PDF Downloaded32    
    Comments [Add]    

Recommend this journal